REAKTOR ATOM



Reaktor Atom mempunyai 5 (lima) bagian pokok, yaitu:
1.      Elemen bahan bakar (terdapat dalam reaktor), adalah: bahan bakar reaktor atom yang berupa batang-batang tipis uranium;
2.      Moderator Neutron, adalah: material (misalnya: air, grafit, deuterium oksida, berilium) yang memperlambat kelajuan neutron;
3.      Batang Kendali, adalah: peralatan untuk mejaga agar reaktor tetap bekerja normal;
4.      Pendingin, adalah: materi (misalnya: air, karbon dioksida) yang digunakan untuk memindahkan kalor dari reaktor;
5.      Perisai Radiasi, adalah: peralatan untuk melingkupi reaktor agar radiasinya tidak menjalar ke mana-mana.
Aplikasi-aplikasi Sinar Radioaktif:
1. Perunut/penjejak di bidang kesehatan;
2. Menganalisa material;
3. Terapi radiasi, misalnya menyembuhkan kanker;
4. Pengawetan makanan
5. Menentukan umur benda, dibidang Sejarah;
6. Untuk pembangkit listrik, PLTN yaitu Pembangkit Listrik Tenaga Nuklir.
REAKTOR NUKLIR
Reaktor nuklir adalah suatu tempat atau perangkat yang digunakan untuk membuat, mengatur, dan menjaga kesinambungan reaksi nuklir berantai pada laju yang tetap.
Komponen dasar dari reaktor nuklir adalah sebagai berikut:

1.      Bahan bakar nuklir, berbentuk batang logam berisi bahan radioaktif yang berbentuk pelat
2.      Moderator, berfungsi menyerap energi neutron
3.      Reflektor, berfungsi memantulkan kembali neutron
4.      Pendingin, berupa bahan gas atau logam cair untuk mengurangi energi panas dalam reaktor
5.      Batang kendali, berfungsi menyerap neutron untuk mengatur reaksi fisi
6.      Perisai, merupakan pelindung dari proses reaksi fisi yang berbahaya
Manfaat Nuklir
1. Aplikasi medis
1.      Pemanfaatan teknologi nuklir dibidang kedokteran dikategorikan menjadi;  diagnosa dan terapi radiasi, perawatan yang efektif bagi penderita kanker.
2.      Teknologi Nuklir untuk Pemandulan Vektor Malaria
Salah satu cara pemandulan nyamuk/vektor adalah dengan cara radiasi ionisasi yang dikenakan pada salah satu stadium perkembangannya. Radiasi untuk pemandulan ini dapat menggunakan sinar gamma, sinar X atau neutron.

2.  Aplikasi Industri
   Pemanfaatan teknologi nuklir terkait dengan teknologi pertambangan digunakan pada eksplorasi minyak dan gas. Teknologi nuklir berperan dalam menentukan sifat dari bebatuan sekitar seperti porositas dan litografi. Teknologi ini melibatkan penggunaan neutron atau sumber energi sinar gamma dan detektor radiasi yang ditanam dalam bebatuan yang akan diperiksa.
   Pada bidang konstruksi, khususnya paka teknologi jalan. Teknologi nuklir digunakan untuk  mengukur kelembaban dan kepadatan tanah, aspal, dan beton. Pemanfaatan teknologi nuklir juga digunakan untuk menentukan kerapatan (kepadatan) suatu produk industri, misalnya untuk menentukan kepadatan tembakau pada rokok digunakan Sr-90, juga dapat digunakan untuk menentukan ketebalan kertas. Saat ini terdapat beberapa industri rokok di Indonesia yang telah memanfaatkan teknologi ini untuk menjaga kualitas rokoknya.
3  Teknologi Nuklir Untuk Pembangkit Listrik
Di era kemajuan teknologi yang semakin berkembang, para ahli telah mampu memanfaatkan teknologi nuklir untuk bahan bakar. Jenis energi terbaru yang satu ini sangat efektif dan produktif, juga dikenal sebagai energi yang ramah lingkungan, bila dimanfaatkan untuk bahan bakar pembangkit listrik. Teknologi nuklir yang populer lewat penggunaannya bagi persenjataan militer ini, ternyata mempunyai manfaat yang begitu besar bagi kesejahteraan umat manusia terutama dalam penyediaan kebutuhan energi listrik. Kalau penggunaan bahan bakar fosil untuk keperluan pembangkit listrik, selain bisa menimbulkan polusi lingkungan, juga sangat boros. Tetapi penggunaan bahan bakar nuklir sangat irit, dan tidak membuat polusi lingkungan. Konon setengah kilogram uranium yang sudah dimurnikan bisa menghasilkan energi yang setara dengan belasan juta liter solar. Hal ini sangat berpengaruh terhadap harga jual listrik kepada konsumen. Di samping itu pun persediaan bahan bakar ini cukup tersedia dalam jangka waktu yang panjang.
Namun sebagai konsekuensi logis dari suatu penggunaan teknologi tinggi, disamping manfaatnya yang besar, juga ada risikonya. Setiap pengoperasian PLTN di semua negara mana pun di dunia, masalah keselamatan merupakan syarat mutlak dan paling utama. Di samping itu pula PLTN generasi baru yang kini digunakan di negara-negara maju faktor keselamatan dan keamanannya lebih terjamin. Pengawasan pengoperasian PLTN dilakukan dengan sangat ketat oleh badan pengawas internasional, maupun dalam negeri masing-masing negara pengguna. Karena kegagalan PLTN di suatu negara masih dianggap kegagalan PLTN secara menyeluruh.
Pengamanan PLTN dilakukan dengan system berlapis-lapis, karena keselamatan suatu PLTN menganut palsafah pertahanan berlapis (defence in depth). Pertahanan berlapis ini meliputi: Lapisan keselamatan pertama, PLTN dirancang dibangun dan dioperasikan sesuai dengan ketentuan yang sangat ketat, mutu yang tinggi dan teknologi mutakhir. Lapis keselematan kedua, PLTN dilengkapi dengan system pengaman/keselamatan yang digunakan untuk mencegah dan mengatasi akibat-akibat dari kecelakaan yang mungkin terjadi selama umur PLTN. Lapis keselamatan ketiga, PLTN dilengkapi dengan system tambahan yang dapat diandalkan untuk mengatasi kecelakaan terparah yang diperkirakan dapat terjadi pada suatu PLTN. Walau begitu kecelakaan tersebut kemungkinannya amat sangat kecil terjadi selama umur PLTN.
Selama operasi PLTN, pencemaran yang disebabkan oleh zat radioaktif terhadap lingkungan dapat dikatakan tidak ada. Air laut atau air sungai yang dipergunakan untuk membawa panas dari kondensor sama sekali tidak mengandung zat radioaktif, karena tidak bercampur dengan air pendingin yang bersirkulasi di dalam reactor. Gas radioaktif yang dapat ke luar dari sistem reaktor tetap terkungkung di dalam system pengungkung PLTN, dan sudah melalui ventilasi dengan filter yang berlapis-lapis. Gas yang lepas melalui cerobong aktivitasnya sangat kecil (sekitar 2 milicurie/tahun), sehingga tidak menimbulkan dampak terhadap lingkungan.

4   Apikasi Komersial
Ionisasi dari Americium-241 digunakan pada detektor asap dengan memanfaatkan radiasi alfa. Tritium digunakan bersama fosfor pada rifle untuk meningkatkan akurasi penembakan pada malam hari. Pemanfaatan sifat perpendaran dari beberapa unsur digunakan dalam beberapa rambu, diantaranya perpendaran tanda "exit".

5   Pemrosesan Makanan dan Pertanian
Irradiasi makanan adalah proses memaparkan makanan dengan radiasi pengion yang ditujukan untuk  menghancurkan mikroorganisme, bakteri, virus, atau serangga yang diperkirakan berada dalam makanan. Jenis radiasi yang digunakan adalah sinar gamma, sinar X, dan elektron yang dikeluarkan oleh pemercepat elektron. Aplikasi lainnya yaitu pencegahan proses pertunasan, penghambat pemasakan buah, peningkatan hasil daging buah, dan peningkatan rehidrasi. Secara garis besar, irradiasi adalah pemaparan (penyinaran dengan radiasi) suatu bahan untuk mendapatkan manfaat teknis.
Efek utama dalam pemrosesan makanan dengan menggunakan radiasi pengion berhubungan dengan kerusakan DNA. Mikroorganisme tidak mampu lagi berkembang biak dan melanjutkan aktivitas mereka. Serangga tidak akan selamat dan menjadi tidak mampu berkembang. Tanaman tidak mampu melanjutkan proses pematangan buah dan penuaan. Semua efek ini menguntungkan bagi konsumen dan industri makanan.
Harus diperhatikan bahwa jumlah energi yang efektif untuk radiasi cukup rendah dibandingkan dengan memasak bahan makanan yang sama hingga matang. Bahkan energi yang digunakan untuk meradiasikan 10 kg bahan makanan hanya mampu memanaskan air hingga mengalami kenaikan temperatur sebesar 2,5 ˚C.
Keuntungan pemrosesan makanan dengan  radiasi pengion adalah, densitas energi per transisi atom sangat tinggi dan mampu membelah molekul dan menghasilkan ionisasi (tercermin pada nama metodenya) yang tidak dapat dilakukan dengan pemanasan biasa. Hal inilah yang menjadi alasan yang menguntungkan. Perlakuan bahan makanan solid dengan radiasi pengion dapat menciptakan efek yang sama dengan pasteurisasi bahan makanan cair seperti susu. Namun, penggunaan istilah pasteurisasi dingin dan iradiasi adalah proses yang berbeda, meski bertujuan dan memberikan hasil yang sama pada beberapa kasus. Iradiasi makanan saat ini diizinkan di 40 negara dan volumenya diperkirakan melebihi 500.000 metrik ton setiap tahunnya di seluruh dunia.
Iradiasi makanan hanya sebagian kecil dari aplikasi nuklir jika dibandingkan dengan aplikasi medis, material plastik, bahan mentah industri, batu perhiasan, kabel, dan lain-lain.

Bahaya Penggunaan Nuklir
Kecelakaan nuklir diakibatkan oleh energi yang terlalu besar yang seringkali sangat berbahaya. Pada sejarahnya, insiden pertama melibatkan pemaparan radiasi yang fatal. Marie Curie meninggal akibat aplastik anemia yang merupakan hasil dari pemaparan nuklir tingkat tinggi. Dua peneliti Amerika, Harry Daghlian dan Louis Slotin, meninggal akibat penanganan massa plutonium yang salah. Tidak seperti senjata konvensional, sinar yang intensif, panas, dan daya ledak bukan satu-satunya komponen mematikan bagi senjata nuklir. Diperkirakan setengah dari korban meninggal di Hiroshima dan Nagasaki meninggal setelah dua hingga lima tahun setelah pemaparan radiasi akibat bom atom.
Kecelakaan radiologis dan nuklir sipil sebagian besar melibatkan pembangkit listrik tenaga nuklir. Yang paling sering adalah pemaparan nuklir terhadap para pekerjanya akibat kebocoran nuklirKebocoran nuklir adalah istilah yang merujuk pada bahaya serius dalam pelepasan material nuklir ke lingkungan sekitar. Kecelakaan militer biasanya melibatkan kehilangan atau peledakkan senjata nuklir yang tidak diharapkan. Percobaan Castle Bravo di tahun 1954 menghasilkan ledakan diluar perkiraan, yang mengkontaminasi pulau terdekat, sebuah kapal penangkap ikan berbendera Jepang (dengan satu kematian), dan meningkatkan kekhawatiran terhadapkontaminasi ikan di Jepang. Di tahun 1950an hingga 1970an, beberapa bom nuklir telah hilang dari kapal selam dan pesawat terbang, yang beberapa di antaranya tidak pernah ditemukan. Selama 20 tahun terakhir telah jadi pengurangan kasus demikian.
Radioaktif adalah sejenis zat yang berada di permukaan atau di dalam benda padat, cair atau gas yang kehadirannya berbahaya bagi tubuh manusia. Radioaktif berasal dari radionuklida (radioisotop) sebuah inti tak stabil akibat energi yang berlebihan.
Menurut situs atomicarchive.com, setidaknya ada tujuh efek yang berbahaya bila tubuh manusia terkena bocoran radioaktif dari PLTN. Efek itu bisa berbahaya bagi rambut, organ tubuh seperti otak, jantung, saluran pencernaan, kelenjar gondok, sistem peredaran darah dan sistem reproduksi.
1.           Rambut
Efek paparan radioaktif membuat rambut akan menghilang dengan cepat bila terkena radiasi di 200 Rems atau lebih. Rems merupakan satuan dari kekuatan radioaktif.
2.           Otak
Sel-sel otak tidak akan rusak secara langsung kecuali terkena radiasi berkekuatan 5000 Rems atau lebih. Seperti halnya jantung , radiasi membunuh sel-sel saraf dan pembuluh darah dan dapat menyebabkan kejang dan kematian mendadak.
3.           Kelenjar gondok
Kelenjar tiroid sangat rentan terhadap yodium radioaktif. Dalam jumlah tertentu, yodium radioaktif dapat menghancurkan sebagian atau seluruh bagian tiroid.
4.           Sistim Peredaran Darah
Ketika seseorang terkena radiasi sekitar 100 Rems, jumlah limfosit darah akan berkurang, sehingga korban lebih rentan terhadap infeksi. Gejala awal mirip seperti penyakit flu. Menurut data saat terjadi ledakan Nagasaki dan Hiroshima, menunjukan gejala dapat bertahan selama sepuluh tahun dan mungkin memiliki risiko jangka panjang seperti leukimia dan limfoma.


5.           Jantung
Seseorang terkena radiasi berkekuatan 1000 sampai 5000 Rems akan mengakibatkan kerusakan langsung pada pembuluh darah dan dapat menyebabkan gagal jantung dan kematian mendadak.
6.           Saluran Pencernaan
Radiasi dengan kekuatan 200 Rems akan menyebabkan kerusakan pada lapisan saluran usus dan dapat menyebabkan mual, muntah dan diare berdarah.
7.           Saluran Reproduksi
Radiasi  akan merusak saluran reproduksi cukup dengan kekuatan di bawah 200 Rems. Dalam jangka panjang, korban radiasi akan mengalami kemandulan.
8.           Dampak lain yang ditimbulkan dalam jangkapendek atau panjang bagi daerah sekitar Pembangkit Tenaga Nuklir :
a.       Dampak radiasi bagi tubuh, mulai dari kulit kering, mual-muntah hingga tewas seketika. Berbagai gejala yang muncul tidak lama setelah terkena radiasi disebut Acute Radiation Syndrome (ARS).
b.      Makin tinggi tingkat radiasinya, makin cepat efeknya muncul atau dirasakan oleh korban dan makin besar juga peluangnya untuk menyebabkan kematian.
c.       Sindrom semacam ini banyak dialami oleh korban pemboman kota Hiroshima dan Nagasaki pada tahun 1945 dan tragedi Chernobyl tahun 1986. Pasalnya tingkat radiasi yang dilepaskan dalam peristiwa tersebut sangat tinggi sehingga memicu gejala yang sifatnya akut.
d.      Terlebih karena sumber radiasi tidak melulu reaktor nuklir, melainkan juga dari benda-benda yang sering ditemui sehari-hari mulai dari. Meski rendah, radiasi yang dipancarkan jika tidak dikendalikan maka bisa memicu dampak jangka panjang.
e.       Dampak sesaat atau jangka pendek akibat radiasi tinggi di sekitar reaktor nuklir antara lain sebagai berikut.
1.        Mual muntah
2.        Diare
3.        Sakit kepala
4.        Demam.
f.       Dampak yang baru muncul setelah terpapar radiasi nuklir selama beberapa hari di antaranya adalah sebagai berikut.
1.    Pusing, mata berkunang-kunang
2.    Disorientasi atau bingung menentukan arah
3.    Lemah, letih dan tampak lesu
4.    Kerontokan rambut dan kebotakan
5.    Muntah darah atau berak darah
6.    Tekanan darah rendah
7.    Luka susah sembuh.
g.       Beberapa dampak mematikan akibat paparan radiasi nuklir jangka panjang antara lain sebagai berikut.
1.      Kanker
2.      Penuaan dini
3.      Gangguan sistem saraf dan reproduksi
4.      Mutasi genetik.


Penggunaan Radioisotop

Bidang Kesehatan
Radioisotop dapat digunakan untuk radioterapi, seperti larutan iodium-131 (Na131l) untuk terapi
kelainan tiroid dan fosfor-32 (Na2H32PO4) yang merupakan radioisotop andalan dalam terapi
polisitemia  vera  dan  leukemia.   Selain,   itu  radioisotop  juga  dapat   digunakan  untuk
radiodiagnosis seperti teknesium-99m (Na99mTcO4) untuk diagnosis fungsi dan anatomis organ
tubuh, sedangkan studi sirkulasi dan kehilangan darah dapat dilakukan dengan radioisotop
krom-51 (Na251CrO4).
Bidang Pertanian
Radioisotop yang digunakan sebagai perunut dalam penelitian efisiensi pemupukan tanaman
adalah fosfor-32 (32P). Teknik perunut dengan radioisotop akan memberikan cara pemupukan
yang tepat dan hemat.
Bidang hidrologi
Natrium-24 (24P) merupakan radioisotop yang sering digunakan untuk mengukur kecepatan
laju dan debit air sungai, air dalam tanah dan rembesan. Kebocoran dam serta pipa penyalur
yang terbenam dalam tanah dapat dideteksi menggunakan radioisotop iodium-131 dalam
bentuk senyawa CH3131l, sedangkan lokasi dumping, asal/pola aliran sedimen dan laju
pengendapan dapat diukur menggunakan krom-51 dan brom-82 masing-masing dalam bentuk
senyawa K251Cr2P7dan K82Br.
Bidang Industri
Teknik  radiografi   merupakan  teknik  yang  sering  dipakai   terutama  pada  tahap-tahap
konstruksi. Pada sektor industri minyak bumi, teknik ini digunakan dalam pengujian kualitas
las pada waktu pemasangan pipa minyak/gas serta instalasi kilang minyak. Selain bagian-bagian konstruksi besi yang dianggap kritis, teknik ini digunakan juga pada uji kualitas las dari
ketel uap tekanan tinggi serta uji terhadap kekerasan dan keretakan pada konstruksi beton.
Radioisotop yang sering digunakan adalah kobal-60 (60Co). Dalam bidang industri, radioisotop
digunakan juga sebagai perunut misalnya untuk menguji kebocoran cairan/gas dalam pipa
serta membersihkan pipa, yang dapat dilakukan dengan menggunakan radioisotop iodoum-131 dalam bentuk senyawa CH3131l
Radioisotop seng-65 (65Zn) dan fosfor-32 merupakan perunut yang sering digunakan dalam
penentuan efisiensi proses industri, yang meliputi pengujian homogenitas pencampuran serta
residence time distribution  (RTD). Sedangkan untuk kalibrasi alat misalnya flow meter,
menentukan volume bejana tak beraturan serta pengukuran tebal material, rapat jenis dan
penangkal petir dapat digunakan radioisotop kobal-60, amerisium-241 (241Am) dan cesium-137 (137Cs).
0

SEJARAH KOMPUTER


Pengertian komputer
Komputer adalah alat yang dipakai untuk mengolah data menurut perintah yang telah dirumuskan. Kata komputer semula dipergunakan untuk menggambarkan orang yang perkerjaannya melakukan perhitungan aritmatika, dengan atau tanpa alat bantu, tetapi arti kata ini kemudian dipindahkan kepada mesin itu sendiri. Asal mulanya, pengolahan informasi hampir eksklusif berhubungan dengan masalah aritmatika, tetapi komputer modern dipakai untuk banyak tugas yang tidak berhubungan dengan matematika.
Secara luas, Komputer dapat didefinisikan sebagai suatu peralatan elektronik yang terdiri dari beberapa komponen, yang dapat bekerja sama antara komponen satu dengan yang lain untuk menghasilkan suatu informasi berdasarkan program dan data yang ada. Adapun komponen komputer adalah meliputi : Layar Monitor, CPU, Keyboard, Mouse dan Printer (sbg pelengkap). Tanpa printer komputer tetap dapat melakukan tugasnya sebagai pengolah data, namun sebatas terlihat dilayar monitor belum dalam bentuk print out (kertas).
Dalam definisi seperti itu terdapat alat seperti slide rule, jenis kalkulator mekanik mulai dari abakus dan seterusnya, sampai semua komputer elektronik yang kontemporer. Istilah lebih baik yang cocok untuk arti luas seperti "komputer" adalah "yang memproses informasi" atau "sistem pengolah informasi."
Saat ini, komputer sudah semakin canggih. Tetapi, sebelumnya komputer tidak sekecil, secanggih, sekeren dan seringan sekarang. Dalam sejarah komputer, ada 5 generasi dalam sejarah komputer.
Dr. John V. Atanasoff secara resmi di beri penghargaan atas diciptakannya komputer elektronik digital. Dr. Atanasoff mengembangkan komputer elektronik digital pertama sejak 1937 – 1942 dan di bantu oleh mahasiswa lulusan yang bernama Clifford Berry. Ia menyebut penemuannya sebagai Atanasoff-Berry Computer atau disingkat ABC.
1946 Setelah berbicara dengan Dr. Atanasoff, membaca buku manual cara kerja ABC dan melihat ABC, Dr. John W. Mauchly bekerja sama dengan Mr. J. Presper Eckert untuk mengembangkan sebuah mesin yang bisa menghitung lintasan peluru (trajectory) untuk Angkatan Darat Amerika. Hasilnya, sebuah komputer elektronik skala besar yang rampung tahun 1946 dan bernama ENIAC. Karena ribuan kali lebih cepat dari mesin pendahulunya, ENIAC merupakan sebuah terobosan besar-besaran dalam teknologi komputer. Beratnya 30 ton, menempati ruangan seluas 1500 kaki kuadrat, dan memiliki lebih dari 18.000 tabung hampa udara (vacuum tube). Legenda menyatakan bahwa ENIAC yang dibuat di Universitas Pennsylvania telah mengurangi ‘pasokan’ cahaya untuk Philadelphia bila diaktifkan.
Hasil yang mengagumkan pada ENIAC menandakan dimulainya komputer generasi pertama.

Generasi komputer

Generasi pertama

Dengan terjadinya Perang Dunia Kedua, negara-negara yang terlibat dalam perang tersebut berusaha mengembangkan komputer untuk mengeksploit potensi strategis yang dimiliki komputer. Hal ini meningkatkan pendanaan pengembangan komputer serta mempercepat kemajuan teknik komputer. Pada tahun 1941, Konrad Zuse, seorang insinyur Jerman membangun sebuah komputer, Z3, untuk mendesain pesawat terbang dan peluru kendali.
Pihak sekutu juga membuat kemajuan lain dalam pengembangan kekuatan komputer. Tahun 1943, pihak Inggris menyelesaikan komputer pemecah kode rahasia yang dinamakan Colossus untuk memecahkan kode rahasia yang digunakan Jerman. Dampak pembuatan Colossus tidak terlalu memengaruhi perkembangan industri komputer dikarenakan dua alasan. Pertama, Colossus bukan merupakan komputer serbaguna(general-purpose computer), ia hanya didesain untuk memecahkan kode rahasia. Kedua, keberadaan mesin ini dijaga kerahasiaannya hingga satu dekade setelah perang berakhir.
Usaha yang dilakukan oleh pihak Amerika pada saat itu menghasilkan suatu kemajuan lain. Howard H. Aiken (1900-1973), seorang insinyur Harvard yang bekerja dengan IBM, berhasil memproduksi kalkulator elektronik untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500 mil. The Harvard-IBM Automatic Sequence Controlled Calculator, atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik. Mesin tersebut beropreasi dengan lambat (ia membutuhkan 3-5 detik untuk setiap perhitungan) dan tidak fleksibel (urutan kalkulasi tidak dapat diubah). Kalkulator tersebut dapat melakukan perhitungan aritmatik dasar dan persamaan yang lebih kompleks.
Perkembangan komputer lain pada masa kini adalah Electronic Numerical Integrator and Computer (ENIAC), yang dibuat oleh kerjasama antara pemerintah Amerika Serikat dan University of Pennsylvania. Terdiri dari 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder, komputer tersebut merupakan mesin yang sangat besar yang mengonsumsi daya sebesar 160kW.
Komputer ini dirancang oleh John Presper Eckert (1919-1995) dan John W. Mauchly (1907-1980), ENIAC merupakan komputer serbaguna (general purpose computer) yang bekerja 1000 kali lebih cepat dibandingkan Mark I.
Pada pertengahan 1940-an, John von Neumann (1903-1957) bergabung dengan tim University of Pennsylvania dalam usaha membangun konsep desain komputer yang hingga 40 tahun mendatang masih dipakai dalam teknik komputer. Von Neumann mendesain Electronic Discrete Variable Automatic Computer (EDVAC) pada tahun 1945 dengan sebuah memori untuk menampung baik program ataupun data. Teknik ini memungkinkan komputer untuk berhenti pada suatu saat dan kemudian melanjutkan pekerjaannya kembali. Kunci utama arsitektur von Neumann adalah unit pemrosesan sentral (CPU), yang memungkinkan seluruh fungsi komputer untuk dikoordinasikan melalui satu sumber tunggal. Tahun 1951, UNIVAC I (Universal Automatic Computer I) yang dibuat oleh Remington Rand, menjadi komputer komersial pertama yang memanfaatkan model arsitektur Von Neumann tersebut.
Baik Badan Sensus Amerika Serikat dan General Electric memiliki UNIVAC. Salah satu hasil mengesankan yang dicapai oleh UNIVAC dalah keberhasilannya dalam memprediksi kemenangan Dwilight D. Eisenhower dalam pemilihan presiden tahun 1952.
Komputer Generasi pertama dikarakteristik dengan fakta bahwa instruksi operasi dibuat secara spesifik untuk suatu tugas tertentu. Setiap komputer memiliki program kode biner yang berbeda yang disebut "bahasa mesin" (machine language). Hal ini menyebabkan komputer sulit untuk diprogram dan membatasi kecepatannya. Ciri lain komputer generasi pertama adalah penggunaan tube vakum (yang membuat komputer pada masa tersebut berukuran sangat besar) dan silinder magnetik untuk penyimpanan data.

Generasi kedua

Pada tahun 1948, penemuan transistor sangat memengaruhi perkembangan komputer. Transistor menggantikan tube vakum di televisi, radio, dan komputer. Akibatnya, ukuran mesin-mesin elektrik berkurang drastis.
Transistor mulai digunakan di dalam komputer mulai pada tahun 1956. Penemuan lain yang berupa pengembangan memori inti-magnetik membantu pengembangan komputer generasi kedua yang lebih kecil, lebih cepat, lebih dapat diandalkan, dan lebih hemat energi dibanding para pendahulunya. Mesin pertama yang memanfaatkan teknologi baru ini adalah superkomputer. IBM membuat superkomputer bernama Stretch, dan Sprery-Rand membuat komputer bernama LARC. Komputer-komputer ini, yang dikembangkan untuk laboratorium energi atom, dapat menangani sejumlah besar data, sebuah kemampuan yang sangat dibutuhkan oleh peneliti atom. Mesin tersebut sangat mahal dan cenderung terlalu kompleks untuk kebutuhan komputasi bisnis, sehingga membatasi kepopulerannya. Hanya ada dua LARC yang pernah dipasang dan digunakan: satu di Lawrence Radiation Labs di Livermore, California, dan yang lainnya di US Navy Research and Development Center di Washington D.C. Komputer generasi kedua menggantikan bahasa mesin dengan bahasa assembly. Bahasa assembly adalah bahasa yang menggunakan singkatan-singakatan untuk menggantikan kode biner.
Pada awal 1960-an, mulai bermunculan komputer generasi kedua yang sukses di bidang bisnis, di universitas, dan di pemerintahan. Komputer-komputer generasi kedua ini merupakan komputer yang sepenuhnya menggunakan transistor. Mereka juga memiliki komponen-komponen yang dapat diasosiasikan dengan komputer pada saat ini: printer, penyimpanan dalam disket, memory, sistem operasi, dan program.
Salah satu contoh penting komputer pada masa ini adalah 1401 yang diterima secara luas di kalangan industri. Pada tahun 1965, hampir seluruh bisnis-bisnis besar menggunakan komputer generasi kedua untuk memprosesinformasi keuangan.
Program yang tersimpan di dalam komputer dan bahasa pemrograman yang ada di dalamnya memberikan fleksibilitas kepada komputer. Fleksibilitas ini meningkatkan kinerja dengan harga yang pantas bagi penggunaan bisnis. Dengan konsep ini, komputer dapat mencetak faktur pembelian konsumen dan kemudian menjalankan desain produk atau menghitung daftar gaji. Beberapa bahasa pemrograman mulai bermunculan pada saat itu. Bahasa pemrograman Common Business-Oriented Language (COBOL) dan Formula Translator (FORTRAN) mulai umum digunakan. Bahasa pemrograman ini menggantikan kode mesin yang rumit dengan kata-kata, kalimat, dan formula matematika yang lebih mudah dipahami oleh manusia. Hal ini memudahkan seseorang untuk memprogram dan mengatur komputer. Berbagai macam karier baru bermunculan (programmer, analis sistem, dan ahli sistem komputer). Industr piranti lunak juga mulai bermunculan dan berkembang pada masa komputer generasi kedua ini.

Generasi ketiga

Walaupun transistor dalam banyak hal mengungguli tube vakum, namun transistor menghasilkan panas yang cukup besar, yang dapat berpotensi merusak bagian-bagian internal komputer. Batu kuarsa (quartz rock) menghilangkan masalah ini. Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC : integrated circuit) pada tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa. Pada ilmuwan kemudian berhasil memasukkan lebih banyak komponen-komponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponen-komponen dapat dipadatkan dalam chip. Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.

Generasi keempat

Setelah IC, tujuan pengembangan menjadi lebih jelas: mengecilkan ukuran sirkuit dan komponen-komponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, Very Large Scale Integration (VLSI) memuat ribuan komponen dalam sebuah chip tunggal.
Ultra-Large Scale Integration (ULSI) meningkatkan jumlah tersebut menjadi jutaan. Kemampuan untuk memasang sedemikian banyak komponen dalam suatu keping yang berukurang setengah keping uang logam mendorong turunnya harga dan ukuran komputer. Hal tersebut juga meningkatkan daya kerja, efisiensi dan keterandalan komputer. Chip Intel 4004 yang dibuat pada tahun 1971membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yang sangat kecil. Sebelumnya, IC dibuat untuk mengerjakan suatu tugas tertentu yang spesifik. Sekarang, sebuah mikroprosesor dapat diproduksi dan kemudian diprogram untuk memenuhi seluruh kebutuhan yang diinginkan. Tidak lama kemudian, setiap piranti rumah tangga seperti microwave, oven, televisi, dan mobil dengan electronic fuel injection (EFI) dilengkapi dengan mikroprosesor.
Perkembangan yang demikian memungkinkan orang-orang biasa untuk menggunakan komputer biasa. Komputer tidak lagi menjadi dominasi perusahaan-perusahaan besar atau lembaga pemerintah. Pada pertengahan tahun 1970-an, perakit komputer menawarkan produk komputer mereka ke masyarakat umum. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram.
Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit pada tahun 1981 menjadi 5,5 juta unit pada tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop).
IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena memopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga memopulerkan penggunaan piranti mouse.
Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat.
Seiring dengan menjamurnya penggunaan komputer di tempat kerja, cara-cara baru untuk menggali potensial terus dikembangkan. Seiring dengan bertambah kuatnya suatu komputer kecil, komputer-komputer tersebut dapat dihubungkan secara bersamaan dalam suatu jaringan untuk saling berbagi memori, piranti lunak, informasi, dan juga untuk dapat saling berkomunikasi satu dengan yang lainnya. Jaringan komputer memungkinkan komputer tunggal untuk membentuk kerjasama elektronik untuk menyelesaikan suatu proses tugas. Dengan menggunakan perkabelan langsung (disebut juga Local Area Network atau LAN), atau [kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.

Generasi kelima

Mendefinisikan komputer generasi kelima menjadi cukup sulit karena tahap ini masih sangat muda. Contoh imajinatif komputer generasi kelima adalah komputer fiksi HAL9000 dari novel karya Arthur C. Clarke berjudul 2001: Space Odyssey. HAL menampilkan seluruh fungsi yang diinginkan dari sebuah komputer generasi kelima. Dengan kecerdasan buatan (artificial intelligence atau AI), HAL dapat cukup memiliki nalar untuk melakukan percapakan dengan manusia, menggunakan masukan visual, dan belajar dari pengalamannya sendiri.
Walaupun mungkin realisasi HAL9000 masih jauh dari kenyataan, banyak fungsi-fungsi yang dimilikinya sudah terwujud. Beberapa komputer dapat menerima instruksi secara lisan dan mampu meniru nalar manusia. Kemampuan untuk menterjemahkan bahasa asing juga menjadi mungkin. Fasilitas ini tampak sederhana. Namun fasilitas tersebut menjadi jauh lebih rumit dari yang diduga ketika programmer menyadari bahwa pengertian manusia sangat bergantung pada konteks dan pengertian ketimbang sekedar menterjemahkan kata-kata secara langsung.
Banyak kemajuan di bidang desain komputer dan teknologi yang semakin memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model non Neumann. Model non Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia.

0